232
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Vendruscolo, E. C. G., Schuster, I., Pileggi, M., Scapim, C. A., Molinari, H. B. C., Marur, C.
J., & Vieira, L. G. E., (2007). Stress induced synthesis of proline confers tolerance to water
deficit in transgenic wheat. J. Plant Physiol., 164, 1367–1376.
Vierling, E., (1991). The roles of heat-shock proteins in plants. Ann. Rev. Plant Biol., 42,
579–620.
Villalobos, M. A., Bartels, B., & turriaga, G., (2004). Stress tolerance and glucose insensitive
phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene1. Plant
Physiol., 135, 309–324.
Vinocur, B., & Altman, A., (2005). Recent advances in engineering plant tolerance to abiotic
stress: Achievements and limitations. Curr. Opin. Biotechnol., 16, 123–132.
Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R. K., Kumar, V.,
et al., (2017). Abscisic acid signaling and abiotic stress tolerance in plants: A review on
current knowledge and future prospects. Front. Plant Sci., 8, 161.
Vogel, M. O., Moore, M., König, K., Pecher, P., Alsharafa, K., Lee, J., & Dietz, K. J., (2014).
Fast retrograde signaling in response to high light involves metabolite export, mitogen
activated protein kinase6, and AP2/ERF transcription factors in Arabidopsis. Plant Cell,
26, 1151–1165.
Volkov, R. A., Panchuk, I. I., Mullineaux, P. M., & Schoffl, F., (2006). Heat stress-induced
H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol.
Biol., 61, 733–746.
Wang, C. T., Ru, J. N., Liu, Y. W., Yang, J. F., Li, M., Xu, Z. S., & Fu, J. D., (2018). The
maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic
Arabidopsis. Int. J. Mol. Sci., 19, 2580.
Wang, C., Lu, G., Hao, Y., Guo, H., Guo, Y., Zhao, J., & Cheng, H., (2017). ABP9, a maize
bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton.
Planta, 246, 453–469.
Wang, F., Chen, H. W., Li, Q. T., Wei, W., Li, W., Zhang, W. K., Ma, B., et al., (2015).
GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress
tolerance in soybean plants. Plant J., 83, 224–236.
Wang, F., Kong, W., Wong, G., Fu, L., Peng, R., Li, Z., & Yao, Q., (2016). AtMYB12 regulates
flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana.
Mol. Genet. Genom., 291, 1545–1559.
Wang, G., Zhang, S., Ma, X., Wang, Y., Kong, F., & Meng, Q., (2016). A stress-associated
NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic
stresses. Physiol. Plant., 158, 45–64.
Wang, J., Lian, W., Cao, Y., Wang, X., Wang, G., Qi, C., Liu, L., et al., (2018). Overexpression
of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates
the dehydration response and anthocyanin biosynthesis in Arabidopsis. Sci. Rep., 8, 1–15.
Wang, J., Wang, L., Yan, Y., Zhang, S., Li, H., Gao, Z., Wang, C., & Guo, X., (2020).
GhWRKY21 regulates ABA-mediated drought tolerance by fine-tuning the expression of
GhHAB in cotton. Plant Cell Rep., 39. 10.1007/s00299-020-02590-4.
Wang, J., Zhou, J., Zhang, B., Vanitha, J., Ramachandran, S., & Jiang, S. Y., (2011). Genome-
wide expansion and expression divergence of the basic leucine zipper transcription factors
in higher plants with an emphasis on sorghum. J. Integr. Plant Biol., 53, 212–231.
Wang, L., Ma, H., & Lin, J., (2019). Angiosperm-wide and family-level analyses of AP2/
ERF genes reveal differential retention and sequence divergence after whole-genome
duplication. Front. Plant Sci., 10, 196.