232

Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3

Vendruscolo, E. C. G., Schuster, I., Pileggi, M., Scapim, C. A., Molinari, H. B. C., Marur, C.

J., & Vieira, L. G. E., (2007). Stress induced synthesis of proline confers tolerance to water

deficit in transgenic wheat. J. Plant Physiol., 164, 1367–1376.

Vierling, E., (1991). The roles of heat-shock proteins in plants. Ann. Rev. Plant Biol., 42,

579–620.

Villalobos, M. A., Bartels, B., & turriaga, G., (2004). Stress tolerance and glucose insensitive

phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene1. Plant

Physiol., 135, 309–324.

Vinocur, B., & Altman, A., (2005). Recent advances in engineering plant tolerance to abiotic

stress: Achievements and limitations. Curr. Opin. Biotechnol., 16, 123–132.

Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R. K., Kumar, V.,

et al., (2017). Abscisic acid signaling and abiotic stress tolerance in plants: A review on

current knowledge and future prospects. Front. Plant Sci., 8, 161.

Vogel, M. O., Moore, M., König, K., Pecher, P., Alsharafa, K., Lee, J., & Dietz, K. J., (2014).

Fast retrograde signaling in response to high light involves metabolite export, mitogen­

activated protein kinase6, and AP2/ERF transcription factors in Arabidopsis. Plant Cell,

26, 1151–1165.

Volkov, R. A., Panchuk, I. I., Mullineaux, P. M., & Schoffl, F., (2006). Heat stress-induced

H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol.

Biol., 61, 733–746.

Wang, C. T., Ru, J. N., Liu, Y. W., Yang, J. F., Li, M., Xu, Z. S., & Fu, J. D., (2018). The

maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic

Arabidopsis. Int. J. Mol. Sci., 19, 2580.

Wang, C., Lu, G., Hao, Y., Guo, H., Guo, Y., Zhao, J., & Cheng, H., (2017). ABP9, a maize

bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton.

Planta, 246, 453–469.

Wang, F., Chen, H. W., Li, Q. T., Wei, W., Li, W., Zhang, W. K., Ma, B., et al., (2015).

GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress

tolerance in soybean plants. Plant J., 83, 224–236.

Wang, F., Kong, W., Wong, G., Fu, L., Peng, R., Li, Z., & Yao, Q., (2016). AtMYB12 regulates

flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana.

Mol. Genet. Genom., 291, 1545–1559.

Wang, G., Zhang, S., Ma, X., Wang, Y., Kong, F., & Meng, Q., (2016). A stress-associated

NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic

stresses. Physiol. Plant., 158, 45–64.

Wang, J., Lian, W., Cao, Y., Wang, X., Wang, G., Qi, C., Liu, L., et al., (2018). Overexpression

of BoNAC019, a NAC transcription factor from Brassica oleracea, negatively regulates

the dehydration response and anthocyanin biosynthesis in Arabidopsis. Sci. Rep., 8, 1–15.

Wang, J., Wang, L., Yan, Y., Zhang, S., Li, H., Gao, Z., Wang, C., & Guo, X., (2020).

GhWRKY21 regulates ABA-mediated drought tolerance by fine-tuning the expression of

GhHAB in cotton. Plant Cell Rep., 39. 10.1007/s00299-020-02590-4.

Wang, J., Zhou, J., Zhang, B., Vanitha, J., Ramachandran, S., & Jiang, S. Y., (2011). Genome-

wide expansion and expression divergence of the basic leucine zipper transcription factors

in higher plants with an emphasis on sorghum. J. Integr. Plant Biol., 53, 212–231.

Wang, L., Ma, H., & Lin, J., (2019). Angiosperm-wide and family-level analyses of AP2/

ERF genes reveal differential retention and sequence divergence after whole-genome

duplication. Front. Plant Sci., 10, 196.